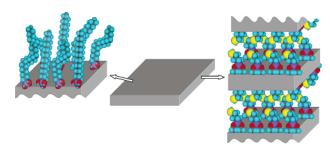
Preparation of Au Nanoparticles in the Interlayer Space of a Layered Alkali Silicate Modified with Alkylthiol Groups

Yusuke Ide,† Atsushi Fukuoka,‡ and Makoto Ogawa*,†,§

Department of Earth Sciences and Graduate School of Science and Engineering, Waseda University, 1-6-1 Nishiwaseda, Shinjyuku-ku, Tokyo 169-8050, Japan, and Catalysis Research Center, Hokkaido University, Nishi 10 Kita 21, Kita-ku, Sapporo 001-0021, Japan


> Received September 7, 2006 Revised Manuscript Received December 1, 2006

The preparation of Au nanoparticles in heterogeneous systems has been conducted in order to control the nanoparticles' morphology and the properties of the nanoparticles. The preparation and the properties of the nanoparticle-supported solids have also been investigated actively, whereas it is still difficult to control the nanoparticles' morphology on solid supports. Inorganic nanoporous solids such as mesoporous materials and layered materials are possible templates and supports for nanoparticles because of the defined and stable nanostructures if compared with organic systems such as surfactant assemblies and polymers. There are a few reports on the preparation of Au nanoparticles in mesoporous silica, in which the nanoparticles with morphologies replicated by the one-dimensional nanostructures such as wire are synthesized.

The two-dimensional interlayer space of layered materials seems to be a unique template for the preparation of Au nanoparticles, possibly nanosheet or plate, although there are few reports on the preparation in layered materials (a layered double hydroxide^{4a} and a perovskite titanate^{4b}); the formation of the nanoparticles with morphologies replicated by the two-dimensional interlayer space has not been achieved yet. Layered materials with variable reactivities are available and the modification of the interlayer space is also possible, so that the study on Au nanoparticle formation is worth further investigation. In this communication, we report the preparation of Au nanoparticles in the interlayer space of a layered alkali silicate, octosilicate,⁵ modified with alkylthiol groups that are known to interact with Au.

The modification of the interlayer space of octosilicate (Na-oct), which was prepared according to the reported method,⁶ with alkylthiol groups was conducted via the

- * Corresponding author. E-mail: makota@waseda.jp.
- † Graduate School of Science and Engineering, Waseda University.
- ‡ Catalysis Research Center, Hokkaido University.
- § Department of Earth Sciences, Waseda University
- (1) Daniel, M.-C.; Astruc, D. Chem. Rev. 2004, 104, 293.
- Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Chem. Lett. 1987, 405.
- (3) (a) Han, Y.-J.; Kim, J. M.; Stucky, G. D. Chem. Mater. 2000, 12, 2068. (b) Fukuoka, A.; Higuchi, T.; Ohtake, T.; Oshio, T.; Kimura, J.; Sakamoto, Y.; Shimomura, N.; Inagaki, S.; Ichikawa, M. Chem. Mater. 2006, 18, 337.
- (4) a) Li, S.-P.; Xu, J.-J.; Chen, H.-Y. Mater. Lett. 2005, 59, 2090. (b) Tai, Y.-W.; Chen, J.-S.; Yang, C.-C.; Wan, B.-Z. Catal. Today 2004, 97, 95
- (5) Iler, R. K. J. Colloid Sci. 1964, 19, 648.

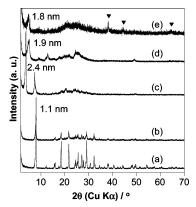


Figure 1. Schematic presentation of the selective silylation at the particle surface of Na-oct with C_{18} TMS and at the interlayer surface with MPS. Color assignment of organosilyl groups: blue, hydrogen; gray, carbon; red, oxygen; purple, silicon; and yellow, sulfur.

silylation of Na-oct with 3-mercaptopropyltrimethoxysilane (MPS) using the dodecyltrimethylammonium-exchanged form (C₁₂TMA-oct) as the intermediate.⁷ This procedure has often been used for the interlayer silvlation of layered alkali silicates.8 In the present study, the particle surface of Na-oct was modified with another silane coupling reagent that does not possess thiol group, n-octadecyltrimethoxysilane (C₁₈TMS), to avoid the formation of Au particles on the particle surface (the C₁₈TMS-modified Na-oct was abbreviated as C₁₈TMS-Na-oct),⁷ as schematically shown in Figure 1. The preparation of Au nanoparticles in the interlayer space of the mercaptopropylsilylated derivative (MPS-oct) was conducted by the reaction between HAuCl₄·3H₂O, the MPS-oct ethanol suspension, and NaBH₄.9 The Au-incorporated derivative thus obtained was abbreviated as AuMPS-oct.

The XRD pattern of $C_{18}TMS-Na$ -oct is shown in Figure 2 together with that of raw Na-oct. The basal spacing of Na-oct, 1.1 nm, did not change upon the reaction with $C_{18}TMS$. The IR spectrum of $C_{18}TMS-Na$ -oct showed the presence of $C_{18}TMS$ in the product (Figure 3a). From the

- (6) Endo, K.; Sugahara, Y.; Kuroda, K. Bull. Chem. Soc. Jpn. 1994, 67, 3352.
- (7) The silylation at the particle surface of Na-oct was conducted by mixing Na-oct (1.0 g) in a C₁₈TMS (2.0 mL) toluene (50 mL) solution and stirring the mixture for 1 day at 100 °C. The product was separated by centrifugation and washed with acetone. C₁₂TMA-oct was prepared by cation-exchange reaction between C₁₈TMS-Na-oct (0.80 g) and a 0.1 M aqueous solution (160 mL) of dodecyltrimethylammonium chloride for 1 week at room temperature. The product was separated by centrifugation and washed with ethanol. The interlayer silylation was conducted by dispersing C₁₂TMA-oct (0.50 g) in an MPS (25 g) toluene (20 mL) solution and stirring the mixture for 8 days at 80 °C under N₂. The product was separated by centrifugation and washed with acetone.
- (8) Yanagisawa, T.; Shimizu, T.; Kuroda, K.; Kato, C. React. Solids 1988, 5, 167.
- (9) HAuCl₄·3H₂O (0.5 Au:SH molar ratio (equivalent to 11 % as Au)) was added to the MPS-oct ethanol suspension, which was prepared by dispersing MPS-oct (100 mg) in ethanol (80 mL) followed by ultrasonication for 3 hours and subsequent stirring for 1 hour;¹⁰ the mixture was then stirred for 7 days at room temperature. The yellow precipitate obtained by evaporating the solvent was redispersed in ethanol (80 mL), and the yellow suspension thus obtained was then mixed with NaBH₄ ethanol (18.6 mL) solution (7 Na:Au molar ratio).¹¹ The color of the mixture turned to blackish purple immediately after NaBH₄ was added and finally to dusty purple after it was stirred for 1 day. After the removal of particles containing the Au that formed outside MPS-oct particles (black precipitate, see Figure 5c) by decantation, the product was separated by centrifugation and dried under reduced pressure.

Figure 2. XRD patterns of (a) Na-oct, (b) C₁₈TMS-Na- oct, (c) C₁₂TMA-oct, (d) MPS-oct, and (e) AuMPS-oct. Triangles denote diffraction peaks due to Au.

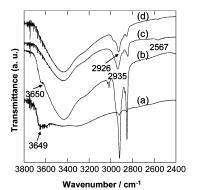


Figure 3. IR spectra of (a) C₁₈TMS-Na-oct, (b) C₁₂TMA-oct, (c) MPSoct, and (d) AuMPS-oct.

TG-DTA curves of C₁₈TMS-Na-oct, the amount of the attached C₁₈TMS was determined to be 3 mass % (see the Supporting Information). Moreover, C₁₈TMS-Na-oct dispersed in toluene. These results confirm the modification of Na-oct with $C_{18}TMS$ only at the particle surface.

Figures 2c and 3b depict the XRD pattern and the IR spectrum of C₁₂TMA-oct, respectively. The basal spacing was 2.4 nm, and the IR spectrum showed the absorption bands characteristic to C₁₂TMA such as C-H stretching vibration at around 2900 cm⁻¹. These results are consistent with those reported for the dodecyltrimethylammoniumexchanged forms of Na-oct, 6,12 indicating the successful intercalation of C₁₂TMA even after the organic modification of the particle surface of Na-oct. From the elemental analysis and the TG analysis results (C, 22.1 mass %; N, 1.7 mass %; SiO₂, 73.3 mass %), the amount of the adsorbed C₁₂TMA was determined to be 1.2 groups per Si₈O₁₇. This value was smaller that those (1.6 or 1.4 groups per Si₈O₁₇) reported for the dodecyltrimethylammonium-exchanged forms described above.6,12

The XRD pattern of MPS-oct is shown in Figure 2d. The basal spacing decreased to 1.9 nm from 2.4 nm for C₁₂TMAoct. In the IR spectrum (Figure 3), the absorption bands due to MPS such as S-H stretching vibration at 2567 cm⁻¹

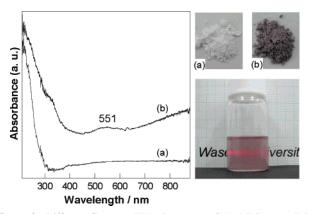


Figure 4. Diffuse reflectance UV-vis spectra of (a) MPS-oct and (b) AuMPS-oct. Inset shows photographs of the corresponding powders and the AuMPS-oct ethanol suspension.

appeared and the absorption band due to the interlayer SiO-H stretching vibration at 3650 cm⁻¹ disappeared upon the silylation. These results confirm the attachment of MPS on the interlayer surface through Si-O-Si covalent bonds. From the elemental analysis and the TG analysis results (C, 8.6 mass %; N, 0.12 mass %; SiO₂, 75.6 mass %), the amount of the attached MPS was determined to be 1.3 groups per Si₈O₁₇. ¹³ The absence of N in the product shows that all of the $C_{12}TMA$ were deintercalated during the silvlation. If the packing of MPS is a hexagonal closest packing, the distance between adjacent MPS attached on the surface was calculated from the composition of MPS-oct and the lattice constants of Na-oct (a = b = 0.73 nm)¹⁴ to be $(0.73 \times 0.73 / 1.3)^{1/2}$ = 0.64 nm. This value was smaller than that (0.74 nm)between adjacent silanol groups seen in the structure of Naoct, 14 suggesting that all the interlayer silanol groups were reacted with MPS. The high surface coverage with organosilyl groups is known to facilitate the swelling in organic solvents^{10,15} and thus thought to make the intercalation of Au precursors effective. The basal spacing of MPS-oct increased to 2.2 nm from 1.9 nm upon the swelling with ethanol.

The formation of Au nanoparticles in the interlayer space of MPS-oct was indicated both by the IR and the UV-vis spectra. The IR spectrum of AuMPS-oct showed that the intensity of the absorption band due to S-H stretching vibration was weakened as a result of the complexation of thiol groups with Au¹⁶ (Figure 3d). In the UV-vis spectrum, the absorption band centered at ca. 550 nm, which is ascribable to the surface plasmon resonance of Au nanoparticles, was observed (Figure 4b). The SEM image of AuMPSoct is shown in Figure 5b together with that (Figure 5a) of MPS-oct. The surface morphology of AuMPS-oct was identical to that of MPS-oct. It is worth mentioning that Au particles with a submicrometer size did not form on the particle surface as shown by the SEM image. The modification at the particle surface of Na-oct with C₁₈TMS and that at the interlayer surface with MPS, as schematically shown in Figure 1, led to the formation of Au nanoparticles in the

⁽¹⁰⁾ Ide, Y.; Ogawa, M. J. Colloid Interface Sci. 2006, 296, 141.

⁽¹¹⁾ Buining, P. A.; Humbel, B. M.; Philipes, A. P.; Verkleij, A. J. Langmuir 1997, 13, 3921.

Mochizuki, D.; Shimojima, A.; Kuroda, K. J. Am. Chem. Soc. 2002, 124, 12082

⁽¹³⁾ The amount of the attached C₁₈TMS (ca. 3 mass %, which is determined from the TG analysis of C₁₈TMS-Na-oct) is subtracted.

⁽¹⁴⁾ Vortmann, S.; Rius, J.; Siegmann, S.; Gies, H. J. Phys. Chem. B 1997, 101, 1292.

⁽¹⁵⁾ Ide, Y.; Ogawa, M. Chem. Lett. 2005, 34, 360.

⁽¹⁶⁾ Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. J. Chem. Soc., Chem. Commun. 1994, 801.

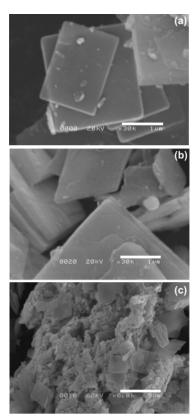


Figure 5. SEM images of (a) MPS-oct and AuMPS-oct (b) without and (c) with Au that formed outside MPS-oct particles. Scale bar: $1 \mu m$ for (a) and (b), 5 μ m for (c).

interlayer space and not on the particle surface. The Au particles that formed outside MPS-oct particles (Figure 5c) were effectively removed by decantation. The basal spacing of AuMPS-oct (1.8 nm) was smaller compared with that (1.9 nm) of MPS-oct (parts d and e of Figure 2), which is explained by the conformational change of the attached MPS upon the formation of Au nanoparticles. The absorption band due to C-H asymmetric stretching vibration at around 2930 cm⁻¹, which is sensitive to the conformational change of alkyl chains, ¹⁷ shifted to a lower-frequency region, indicating the conformational change of propyl chain to a more ordered (all-trans) conformation (parts c and d of Figure 3).

Taking the gallery height (1.1 nm, which was calculated by subtracting the silicate sheet thickness, 0.74 nm,⁵ from the basal spacing, 1.8 nm) into account, we believe the morphology of the formed Au in the interlayer space of MPSoct to be disc or polygonal plate with a thickness of less than 1 nm and an average lateral size of 4.8 nm (Figure 6). The platy morphology is suggested also by the UV-vis spectrum (Figure 4b). The absorption band from visible light region to 1400 nm was observed, which is ascribable to the longitudinal surface plasom band of Au nanopartices with anistropic morphologies (plate and rod). 18,19 The absorption band observed at ca. 550 nm is ascribable to the transverse

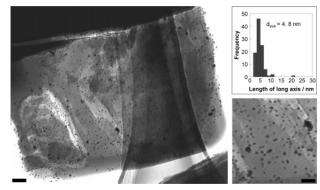


Figure 6. TEM image of AuMPS-oct. Scale bar: 50 nm. Inset shows the size distribution of Au nanoparticles and the magnified TEM image (scale

surface plasmon band¹⁸ or the localized surface plasmon resonance¹⁹ of Au nanoparticles with anisotropic morphologies. Thus, it is thought that the two-dimensional interlayer space directed the formation of the platy nanoparticles.

Au plates with a diameter of ca. 140 nm and a thickness of ca. 8 nm were synthesized using ca. 5.2 nm Au spherical particles as seeds^{18b} and those with a controlled diameter from a few hundred nanometers to longer than 10 μ m were synthesized in a lamellarly ordered surfactant assembly.²⁰ The diameter and thickness of the presently formed Au plates were smaller than the previous plates. The diameter of Au nanoparticles in the interlayer space increased by changing the amount of the added HAuCl₄ (see the Supporting Information). As shown in the inset of Figure 4, AuMPSoct dispersed in organic solvents such as ethanol and chloroform to form stable suspensions. This character is useful for device fabrication.

In summary, we have successfully synthesized Au nanoparticles in the interlayer space of the mercaptopropylsilylated octosilicate. The morphology of the formed Au nanoparticle was characterized to be plate, which was replicated by the two-dimensional interlayer space. The present result suggests that the present strategy is applicable to a wide variety of interlayer hydroxyl-group-bearing layered materials with different nanostructures and compositions.

Acknowledgment. This work was supported by a Grantin-Aid for Scientific Research on Priority Areas (417) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of the Japanese Government, by CREST (JST).

Supporting Information Available: The TG-DTA curves of C₁₈TMS-Na-oct and the TEM image of the product prepared with an increased amount of HAuCl4. This material is available free of charge via the Internet at http://pubs.acs.org.

CM062117D

⁽¹⁷⁾ Weers, J. G.; Scheuing, D. R. In Fourier Transform Infrared Spectroscopy in Colloid and Interface Science; Scheuing, D. R., Ed.; ACS Symposium Series 447; American Chemical Society: Washington, D.C., 1990; pp 87-122.

^{(18) (}a) Shankar, S. S.; Rai, A.; Ahmad, A.; Sastry, M. Chem. Mater. 2005, 17, 566. (b) Millstone, J. E.; Park, S.; Shuford, K. L.; Qin, L.; Schatz, G. C.; Mirkin, C. A. J. Am. Chem. Soc. 2005, 127, 5312.

^{(19) (}a) Hanarp, P.; Käll, M.; Sutherland, D. S. J. Phys. Chem. B 2003, 107, 5768. (b) Niidome, Y.; Takahashi, H.; Urakawa, S.; Nishioka, K.; Yamada, S. Chem. Lett. 2004, 454.

Wang, L.; Chen, X.; Zhan, J.; Sui, Z.; Zhao, J.; Sun, Z. Chem. Lett. **2004**, 33, 720.